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ABSTRACT: The quantitative structure property relationship (QSPR) for
thermal conductivity of liquid aliphatic alcohols was developed on the basis of
139 thermal conductivity data points of liquid aliphatic alcohols, which were
divided into a 65-member training set, a 20-member validation set, and a 54-
member prediction set. Four parameters (temperature-T, the intrinsic state
pseudoconnectivity index-type 1s-Psi_i_1s, the sixth eigenvalue from augmented
edge adjacency matrix weighed by edge degree-Eig06_AEA(ed), and the global
topological charge index-JGT) were screened to develop the model by using the
stepwise regression and the best subset regression method. For the training set,
validation set and prediction set, the square correlation coefficient (R2) is 0.9769,
0.9726, and 0.9738, respectively. The mean relative deviation values of training set,
validation set, and prediction set were 1.4%, 1.6%, and 1.6%. The QSPR model can
provide not only basic data for the engineering application but also theoretical
guidance for designing and seeking specific thermal conductivity materials.

1. INTRODUCTION

Thermal conductivity is the essential physical property of
chemicals and a fundamental property for the chemical
industry, technological design, and energy engineering, and
closely related to its composition, structure, density, pressure,
and temperature.1,2

In the production process, people have developed many
measuring methods in order to obtain thermal conductivity
data. However, each measurement method has its limitation of
applications. There are two reasons for this. One is that
thermal convection and diffusion within fluids and the heat loss
in experiments (especially at high temperatures) have not been
solved, which make the measurement errors of liquid thermal
conductivity very big. The other reason is that some
compounds are easily decomposed and volatile, which makes
thermal conductivity inaccessible in experiments. Therefore,
the thermal conductivity data of many compounds is lacking.3,4

Under this circumstance, some calculation methods are
deduced to predict thermal conductivity. The results of these
methods for calculating thermal conductivity of alcohols are
listed in Table 1. However, these methods are empirical, and

they need experimental data to support. First and foremost,
each formula’s error in calculation is also relatively big,
generally between 3 and 10%.
Considering the limitation of empirical methods, some

researchers have attempted to predict thermal conductivity of
compounds based on QSPR models. They estimated the
physical properties of compounds with molecular descrip-
tors.8−10 The possibility of estimation can be substantial and
the accuracy in calculation can be increased.11 The research on
QSPR models for predicting thermal conductivity is listed in
Table 2. It can be seen that using QSPR to predict the
properties of organic compounds is simple and efficient.
At present, diverse linear and nonlinear methods are used to

develop QSPR models.16−20 Linear QSPR model can be used
to reveal the parameters affecting the properties of compounds,
and predict the properties of compounds simply and
conveniently.
Aliphatic alcohol is an important category of organic

compounds and an important raw material in daily life and
chemical production, and thermal conductivity is an important
data in the industrial production and utilization of such
compounds.
The present work intends to (1) collect thermal conductivity

data of liquid aliphatic alcohol from literatures and experi-
ments; (2) extract and find out molecule characteristic
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Table 1. Results of Some Empirical Methods for Calculating
Thermal Conductivity of Alcohols

author Rodenbush Nagvekar Baroncini et al.

no. of data point 267 634 592
MRD (%) 2.7 6.3 7.7
ref 5 6 7
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descriptors that influence thermal conductivity; (3) develop a
more robust and simpler linear QSPR model that could predict
the thermal conductivity of liquid aliphatic alcohols effectively.

2. MATERIAL AND METHODS
2.1. Data Set Preparation. Thermal conductivity data of

liquid aliphatic alcohols were collected from Handbook of
Thermal Conductivity of Liquids and Gases.4 A total of 114
experimental data collected covered a wide range of
compounds (C1−C18) and temperature (280 K−450 K),
which were divided into a 65-member training set, a 20-
member validation set, and a 29-member prediction set, with
stratified randomization method. Stratified randomization
refers to the situation in which strata are constructed based
on values of predicting variables, and a randomization scheme
is performed separately in each stratum, therefore a balanced
representation of a column’s levels in each of the training,
validation, and prediction sets is obtained.
To ensure the diversity of aliphatic alcohol present in the

training set, validation set, and prediction set, the diversity test
was performed using the Euclidean distance.21 As shown in
Figure 1, the scatter distribution indicates the diversity of the
training set, validation set, and prediction set.

To obtain more data to validate the predictive ability of the
model, another 25 data were measured using the DRE-2A
thermal conductivity instrument with nonequilibrium state
hot-wire method. At first, the liquid sample (100 mL) was
poured into the test tube, then, the probe was inserted into the
test tube, and put it into the constant temperature water tank.
After the probe and the sample achieved the heat balance, a
certain amount of electric current was plugged into the probe,
and the temperature of it rose, and then the heat was
transferred to the liquid, and in turn the temperature
decreased. According to the relationship between temperature

and time, thermal conductivity was calculated automatically by
the instrument. Each sample was measured three times and the
final result is an averaged value. The error of measurement is <
±3%, and these measured data were included into the
prediction set.
Finally, the database consisted of a 65-member training set, a

20-member validation set, and a 54-member prediction set,
which were listed in Supporting Information (Table S1). The
training set was used for model development, the validation set
was used as the criteria for the model development, and the
prediction set was used to evaluate the predictive ability of the
developed model.

2.2. Molecular Descriptors Calculation and Screen-
ing. First, structures of aliphatic alcohols were constructed in
the GaussView graphical interface software package.22 And
then, the structures were optimized using keywords (B3LYP/
6-31G(d) opt freq) in Gaussian 09.23 Finally the optimized
molecular structures were input into Dragon6.024 software.
The logical molecular descriptor blocks of topological indices,
walk, and path counts, connectivity indices, 2D autocorrela-
tion, edge adjacency indices, burden eigenvalues, P_VSA-like
descriptors, and Randic molecular profiles, etc. for each
molecule were calculated by Dragon.
Next, because constant and near-constant descriptors have

no or little information, the presence of missing values can lead
to missing molecular structure information, and the pair
correlation among descriptors greater than 0.90 will lead to the
multicollinearities of the model, the following descriptors were
excluded: (i) descriptors with constant and near-constant
values whose standard deviation are less than 0.001; (ii)
descriptors with at least one missing value; (iii) descriptors
with pair correlation larger than or equal to 0.90. As a result,
297 descriptors were retained.

2.3. QSPR Model Development. The stepwise regression
method in DPS software package25 was used to screen
descriptors and establish the QSPR model. Using stepwise
regression method, 9 descriptors were screened out. Best
subset regression (BSR) can compare different regression
models that contain subsets of the predictors, and it is an
efficient way to identify models that adequately fit data with as
few predictors as possible. Finally, a linear 4-descriptor QSPR
model was developed by using BSR method with ordinary
least-squares algorithm, including T, Psi_i_1s, Eig06_AEA(Ed),
and JGT. To avoid overfitting, the maximization correlation
coefficient (Q2) of the validation set acted as a criteria for the
model developing, and the prediction set was used to estimate
the predictive ability of the QSPR model. All data including
descriptors and thermal conductivity are available in the
Supporting Information (Table S1).

3. RESULTS AND DISCUSSION

The proposed QSPR model for the prediction of thermal
conductivity of liquid aliphatic alcohols was developed:

Table 2. Review of Previous Models for Predicting Properties about Thermal Conductivity

method authors compound class parameters n R2 result ref

MLRa Liu et al. diverse organic compound 4 86 0.9620 RMSEP = 0.003 12
MLR Cao et al. alkanes 4 155 0.9510 sc = 0.0033 13
MLR Kauffman et al. organic solvents 9 213 0.8172 s = 0.0143 14
GFAb Aboozar et al. alcohols 5 155 0.9438 RMSEd = 0.0474 15

aNote: MLR stands for Multiple Linear Regression. bGFA stands for Genetic Function Approximation. cs stands for standard deviation; dRMSE
stands for root-mean-square error.

Figure 1. Similarity test of thermal conductivity.
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The model shows that the thermal conductivity is positively
correlated with JGT and Eig06_AEA(Ed), and negatively
correlated with Psi_i_1s and T.
3.1. Model Validation. Model validation can evaluate the

robustness and the predictive ability of the QSPR model.
Roberto Todeschini et al. (in 2016)26 dealt with the

evaluation of five Q2 metrics (i.e., QF1
2 , QF2

2 , QF3
2 , Qccc

2 , and QRm
2 )

and highlighted that only the QF3
2 metric satisfies all the four

fundamental mathematical principles. So, they strongly
recommended using QF3

2 as predictive ability metric. QF3
2 was

defined as the following:
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where yi is the experimental response of the ith object, ŷi/i is
the predicted response when the ith object is not in the
training set, nTR and nOUT are the number of training and
prediction objects, respectively, and y̅TR is the average value of
the training set experimental responses. In their latest article,
Roberto Todeschini et al. still suggested using RMSEP as a
predictive metric based on the different training data set (in
2018).27

The value of QF3
2 is 0.9767. RMSEP and other model

statistics of QSPR model are listed in Table 3. From Table 3, it
is apparent that R2 > 0.97, QF3

2 > 0.98, and RMSEP = 0.0029,
which indicates that the QSPR model is acceptable.

Validation for each parameter is an essential step of QSPR
modeling. According to the standardized coefficient, each
parameter, and statistics are listed in Table 4.
The variance inflation factors (VIF) computed as VIF = (1

− R2) − 1 (where R2 is the coefficient of determination) can
be used to identify whether high multicollinearities exist

among the descriptors. As shown in Table 4, all the VIF values
in the model were less than 2, which indicated that no
multicollinearities exist.
Standardized coefficient can identify which of the

independent variables have a greater effect on the dependent
variable in a multiple regression analysis. From the stand-
ardized coefficient in Table 4, the most significant influence of
the parameters on thermal conductivity in turn is Psi_i_1s,
JGT, Eig06_AEA(Ed), and T. The descriptors and their
meaning are given in Table 5.

To make clear the relationship among molecules,
descriptors, and thermal conductivity, Table 6 shows some
examples of molecules, descriptors, and thermal conductivity
values at 340 K. The other molecules, descriptors, and thermal
conductivity values were listed in Table S1.

3.1.1. Psi_i_1s. Intrinsic state pseudoconnectivity index
(Psi_i_1s)29 is the most significant structural factor affecting
the thermal conductivity of aliphatic alcohols, belonging to the
topological index. It is defined as

δ
δ

=
· +

I
L(2/ ) 1

i
i i

i

2 v

∏Ψ = + −I I1 ( )s
b

i j b1
1/2

where Li is the main quantum number, δi
v is the valence

electron number, i is the sigma electron number of the i atom,
Ii is the intrinsic state of the ith atom, Ij is the intrinsic state of
the jth atom, and b is the bond between the i atom and the j
atom.
Psi_i_1s describes the intrinsic state of the molecule, the

distribution of valence electrons and the energy density of the
molecule. For alcohols with different numbers of carbon
atoms, the larger the Psi_i_1s value is, the greater the energy
density of the molecule is, and the higher the thermal
conductivity is. For example, the Psi_i_1s values of methyl-1-
hexanol and nonanol are 0.002 and 0.004. And their thermal
conductivity values are 0.133 and 0.151.

3.1.2. JGT. The second parameter affecting the thermal
conductivity of aliphatic alcohols is the global topological

Table 3. Model Statistics of All the Three Sets

data sets n R2(Q2) s
RMSE(C/

P) MRD F

training set 65 0.9769 0.0186 0.0029 1.4% 633.35
validation set 20 0.9726 0.0184 0.0033 1.6%
prediction set 54 0.9738 0.0188 0.0029 1.6%

Table 4. Statistical Validation Values for Each Parameter in the Regression Equation

parameter coefficient standardized coefficient t-validation P VIF

Psi_i_1s 0.10070 0.005569 18.09 <0.0001 1.01
JGT −0.06572 0.002057 −31.94 <0.0001 1.50
Eig06_AEA(Ed) 0.00988 0.000841 11.73 <0.0001 1.44
T −0.00018 0.000013 −13.48 <0.0001 1.26

Table 5. Three Molecular Descriptors Used in QSPR Model

molecular
descriptor ref type definition

Psi_i_1s 28,29 topological
indices

intrinsic state
pseudoconnectivity
index-type 1s

JGT 29,30 2D
autocorrelations

global topological charge
index

Eig06_AEA(Ed) 29 edge adjacency
indices

sixth eigenvalue from
augmented edge
adjacency mat. weighted
by edge degree

T temperature
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charge index JGT.29,30 JGT belongs to a 2D-autocorrelation
index calculated on the basis of the adjacency matrix of the
molecular topology graph and the reciprocal squared distance
matrix to describe the charge transfer between two atoms.
Global topological charge index J is defined as

∑=
=

J J
k

k
1

5

where k is the path length and Jk is the average topology charge
index, which is defined as

= −M AD 2
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where A is the adjacency matrix of the molecular topology
graph, D−2 is the reciprocal squared distance matrix, mij is the
element of matrix M, δi is the vertex degree of the i atom, N is
the number of edges, and dij is the topological distance
between the i atom and the j atom. If dij ≠ k, δ(dij; k) = 1. If dij
= k, δ(dij; k) = 0.
JGT describes the degree of molecular branches. The larger

the JGT value is, the more molecular branches are, and the
shorter the main chain is. Accordingly, heat transferring along
the main chain is reduced, and so is thermal conductivity. The
more molecular branches there are, the greater is the value of
JGT, such as JGT values of n-butyl alcohol and tertiary butanol
are 0.262 and 0.750, and their thermal conductivity values are
0.143 and 0.110.
3.1.3. Eig06_AEA(ed). The third parameter that affects the

thermal conductivity of aliphatic alcohols is sixth eigenvalue
from augmented edge adjacency matrix, weighted by edge
degree (Eig06_AEA(ed)),29 which is a topological index
calculated on the basis of the edge adjacency matrix of the
molecule. Weighted edge adjacency matrices (EA(w)) are
unsymmetrical edge matrices derived from an edge weighted
molecular graph obtained by applying an edge weighting
scheme w, where ed represents the edge degree. By replacing
the zero-diagonal elements of the edge adjacency matrix with
specific key attributes, an edge-advanced adjacency matrix
(AEA(w)) is obtained, each encoding a specific chemical
information.
A weighted edge adjacency matrix wE can be calculated as

[ ] =wE ij
w i jif ( , ) are adjacent bonds

0 otherwise

j
l
m
oo
n
oo

The augmented edge adjacency matrix aE(w) can be derived
from an edge-weighted molecular graph, for any weighting
scheme w as

[ ] = =aE w ij

i j

w i j( )

1 if ( , ) are adjacent bonds

if

0 otherwise
i

l
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ooooo
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The Eig06_AEA(Ed) describes the expansion and contraction
of the matrix. The larger are the eigenvalues, the greater is the
scalability of the molecule, and the greater is the molecular
vibration. Since molecular vibration contributes to heat
conduction, the greater is the thermal conductivity.31 For
example, the Eig06_AEA (ed) values of methyl-1-hexanol and
nonanol were 0.715 and 1, respectively. And their thermal
conductivity values are 0.133 and 0.151.
The above three parameters describe the structural

characteristics of the molecule from the degree of branching
of aliphatic alcohols, energy density, and molecular scalability,
and the combination has good correlation with thermal
conductivity of liquid aliphatic alcohols. Besides these three
parameters, temperature also has an effect on thermal
conductivity.

3.1.4. Temperature (T). According to the experiments, the
effect of temperature on the thermal conductivity of liquid
compounds is remarkable. As the temperature rises, the
movement of the molecules inside the liquid is more chaotic,
and the molecular directional motion from the high energy
area to the low energy area weakens, and heat conduction is
reduced. Therefore, as the temperature increases, the thermal
conductivity decreases.
These four parameters have a significant contribution to the

thermal conductivity of aliphatic alcohols. The correlation
between the calculated results and the experimental values is
shown in Figure 2 and the calculated values were listed in
Table S1.
Figure 2 shows that the calculated thermal conductivity

values of the QSPR model were in high agreement with the
experimental values.

3.2. Applicability Domain (AD). The Applicability
Domain (AD) of a QSAR model is the information space on
which the training set of the model has been developed. The
purpose of AD is to testify whether the model can be reliably
applicable. In general, this is the case for interpolation rather
than for extrapolation.21,32

To visualize the AD of a QSPR model, the Williams plot of
standardized crossvalidated residuals (R) versus leverage (Hat
diagonal) values (h) can be used for a simple graphical
detection of both the response outliers (i.e., compounds with
crossvalidated standardized residuals greater than three
standard deviation units, R > 3σ) and structurally influential
chemicals in a model (h > h*, h* = 3p/n, where p is the
number of model parameters plus one, and n is the number of
the objects used to develop the model).
Figure 3 shows the Williams plot (AD) of the QSPR model.

Table 6. Some Examples of Aliphatic Alcohols at 340 K

name structure no. of carbon Psi_i_1s JGT Eig06_AEA(Ed) λ(W/m·K)

n-butyl alcohol CH3(CH2)3OH 4 0.065 0.262 0.000 0.143
tertiary butanol (CH3)3COH 4 0.063 0.750 0.000 0.110
methyl-1-hexanol (CH3)2(CH2)4OH 6 0.002 0.405 0.715 0.133
nonanol CH3(CH2)8OH 9 0.004 0.159 1.000 0.151
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The AD is mostly located in the region of 0 ≤ h ≤ 0.231
(blue vertical line) and −3 ≤ R ≤ 3. Existence of the majority
of data of training set, validation set, and prediction set points
in this domain reveals that both model derivation and
prediction are done in the applicability domain which results
in a valid model. Good high leverage points are located in the
domain of h > 0.231 and −3 ≤ R ≤ 3. These points fit the
model well and make it more stable and precise.
The MRD values of training set, validation set, and

prediction set were 1.4%, 1.6%, and 1.6%. Compared with
those of earlier works, Rodenbush5 (MRD is 2.7%), Negvekar6

(MRD is 6.3%), Baroncini7 (MRD is 7.7%), Liu et al.12

(RMSEP = 0.003), Cao et al.13 (R2 is 0.9510), Kauffman et
al.14 (R2 is 0.8172), and Aboozar et al.15 (RMSE = 0.0474, R2

= 0.9438), the present model exhibits superior performance.
In summary, the established QSPR model is not only robust

but also has reliable predictive ability.

4. CONCLUSIONS
A four-parameter linear QSPR model was developed by using
the stepwise regression method and the BSR method. The
MRD values of training set, validation set, and prediction set
were 1.4%, 1.6%, and 1.6%, respectively, within the range of
experimental error (typically 5%). Besides high accuracy and
significant correlation between molecular structure and the

liquid thermal conductivity, the selected descriptors have
explicit physical meanings and show that the liquid thermal
conductivity depends on the degree of branching of liquid
aliphatic alcohols, energy density, and molecular scalability.
And most data points are located in the acceptable applicability
domain, which means that the QSPR model is reliable and has
high predictive ability. In addition, analyzing the model with
various validation techniques verifies the reliability and
robustness of the present model (R2 > 0.97 and QF3

2 > 0.98).
The study provides a convenient calculation method for

calculating liquid thermal conductivity data of liquid aliphatic
alcohols. It can provide fundamental data for the engineering
application, as well as theoretical guidance for designing and
seeking specific thermal conductivity materials.
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■ NOMENCLATURE

Roman Symbols
R the correlation coefficient
T temperature

Greek Symbols
λ thermal conductivity

Sub- and Superscripts
calc calculated property
exp experimental property

Abbreviations
QSPR quantitive structure property relationship
Psi_i_1s intrinsic state pseudoconnectivity index
Eig06_AEA(ed) sixth eigenvalue from augmented edge

adjacency mat. weighted by edge degree
JGT the global topological charge index
MRD mean relative deviation
s standard deviation
MLR multiple linear regression
GFA genetic function approximation
BSR best subset regression
VIF variance inflation factors

Figure 2. Calculated liquid thermal conductivity vs experimental
values.

Figure 3. Applicability Domain of the proposed model.
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