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ABSTRACT: Thermal conductivity is an essential thermodynamic data in chemical
engineering applications. Liquid aliphatic oxygen-containing organic compounds are
important organic intermediates and raw materials. As a result, estimating thermal
conductivity of liquid aliphatic oxygen-containing organic compounds is of significance
in industry production. In this study, the genetic function approximation method was
applied to screen descriptors and develop a 6-descriptor linear quantitative structure−
property relationship model. The entire data set of these compounds covering 1064
thermal conductivity values was divided into 694-member training set, 298-member test
set, and 72-member prediction set. The average absolute relative deviation of the
training set, test set, and prediction set were 4.14, 4.41, and 4.16%, respectively. Model
validation and Y-randomization test proved that the developed model has goodness-of-
fit, predictive power, and robustness. In addition, the applicability domain of the
developed model was visualized by the Williams plot. This study can provide a
convenient method to estimate the thermal conductivity for researchers in chemical
engineering production.

1. INTRODUCTION

Thermal conductivity acts as an important physical property
that can reflect the ability of heat transfer of a substance. In
chemical industry, petroleum industry, and energy engineering,
thermal conductivity is one of the essential basic thermody-
namic data for heat transfer design.
From the middle of the 18th century, many researchers have

made a lot of exploration on thermal conductivity measuring
methods.1−6 However, these methods are time-consuming,
costly, and technique limited, and sometimes, there is a certain
error in the measured thermal conductivity value. The main
reason is that the heat loss caused by convection and radiation
cannot be controlled during the measurement. As a result,
developing a theoretical method for estimating thermal
conductivity is of theoretical significance.
Some estimation methods have been proposed to predict

thermal conductivity of aliphatic oxygen-containing organic
compounds, which were based on the liquid molecular motion
theory model and knowledge of the liquid heat conduction
mechanism. However, it should be aware that these methods
need be supported by empirical theory and experimental data.
As a result, these methods are empirical with big errors,
generally between 2 and 10%, as shown in Table 1.
The quantitative structure−property/activity relationship

(QSPR/QSAR) was defined as a mathematical relationship
connecting the chemical structure with compound properties

in a quantitative manner.10 It can reliably predict the
physicochemical, biological, and pharmacological properties
of compounds from the molecular structures of compounds.
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Table 1. Results of Aliphatic Oxygen-Containing Organic
Compound Calculations

Rodenbush et al.
Nagvekar and

Daubert Baroncini et al.

classes
no. of
data

MRDa

/%
no. of
data MRD/%

no. of
data MRD/%

alcohols 267 2.7 634 6.3 592 7.7
acids 68 3.2 787 6.5 236 4.1
esters 92 2.8 243 9.7 197 5.7
ketones 48 3.2 68 6.3 72 8.3
ethers 18 3.1 75 7.3 60 3.2
aldehydes 28 2.1 43 8.3 44 6.4
refs 7 8 9

aMRD stands for mean relative deviation.
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This method became prevalent when it is not possible to

obtain accurate values in the experiment limited to economy,

time, or technology.11−13 As for thermal conductivity, few

works are reported with QSPR. Results of some works are

listed in Table 2.
Aliphatic alcohols, ethers, aldehydes, ketones, acids, and

esters are diverse important chemical products and inter-

mediates, which are widely used as industrial raw materials,

lubricants, solvents, medicines, daily necessities, food additives,

and so forth. Thermal conductivity is an important

thermodynamic property for these organic compounds in

industrial application. Therefore, how to accurately predict the

thermal conductivity of these diverse aliphatic oxygen-

containing organic compounds has important significance for

engineering application.
Structures of these compounds have some certain

similarities, which satisfies the basic conditions for the QSPR

study.19−21 This work intends to (1) collect thermal

conductivity data of aliphatic alcohols, ethers, aldehydes,

ketones, acids, and esters; (2) extract molecular descriptors

from molecules; (3) develop a QSPR model and validate the

model; and (4) predict the thermal conductivity of diverse

aliphatic oxygen-containing organic compounds using the

model.

2. RESULTS AND DISCUSSION

Using the GFA (100 initial population size, 500 the maximum

generations, 10% the mutation probability, and the smooth

parameter of LOF α = 0.5), a 6-descriptor linear QSPR model

was developed:

λ = − + × _ + ×

− × − × − × _
− ×

SM B s SIC
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694, 0.9138, RMSE 0.0067,
1214.35, 0.0067, AARD % 4.14%,

0.9118, RMSE 0.0072, 298,
0.8922, AARD % 4.41%,

RMSE 0.0071, 0.8917,
0.8916, 0.9065, 0.8466,

CCC 0.9437, 72, 0.8816,
RMSE 0.0064, AARD % 4.16%
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2
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2
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2
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2
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2
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2
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where SM2_B(s) is the spectral moment of order 2 from the
Burden matrix weighted by I-state, SIC0 is the structural
information content index (neighborhood symmetry of 0-
order), IC1 is information content index (neighborhood
symmetry of 1-order), T is the temperature, Eta_F is the eta
functionality index, and MATS2m is Moran autocorrelation of
lag 2 weighted by mass. The regression statistics of these
involved parameters are given in Table 3.

2.1. Model Validation. As can be seen from the absolute
values of standardized coefficients in Table 3, the most
significant influence of descriptors on thermal conductivity in
turn is SM2_B(s), SIC0, IC1, T, Eta_F, and MATS2m. The
variance inflation factor (VIF) values of these descriptors lower
than 10 together with the intercorrelation matrix (Table 4)

manifest the absence of multicollinearities among the
descriptors.22 In addition, the confidence level p values of
the descriptors all far less than 0.0001 and F = 1214.35 prove
the statistical significances of the descriptors and the developed
model, respectively.

Table 2. Retrospect of Works for Thermal Conductivity Prediction

methods authors compound class parameters N R2 results refs

MLR Gao and Cao alkanes 4 155 0.9510 sa= 0.0033 14
MLR Kauffman and Jurs organic solvents 9 213 0.953 RMSEb= 0.0136 15
GFAc Khajeh and Modarress alcohols 5 116 0.9438 RMSE = 0.0474 16
MLR Liu et al. alcohols 4 139 0.9738 RMSE = 0.0029 17
GFA Liu et al. alkyl halides 6 410 0.9745 RMSE = 0.0035 18

as stands for the standard deviation. bRMSE stands for root-mean-square error. cGFA stands for genetic function approximation.

Table 3. Regression Statistics of Parameters Involved in the QSPR Model

parameters type coefficients standardized coefficients t p VIF

SM2_B(s) 2D matrix-based descriptors 0.0711 1.0443 47.33 0.000 3.88
SIC0 Information indices 0.2960 0.9626 58.79 0.000 2.14
IC1 Information indices −0.0511 −0.5876 −36.67 0.000 2.04
T Temperature −0.0002 −0.5853 −49.16 0.000 1.16
Eta_F ETA indices −0.0127 −0.5579 −27.77 0.000 3.22

Table 4. Correlation Matrix of the Involved Descriptors

SM2_B(s) SIC0 IC1 T Eta_F MATS2m

SM2_B(s) 1.000
SIC0 −0.366 1.000
IC1 0.114 0.575 1.000
T 0.206 −0.277 −0.250 1.000
Eta_F 0.810 −0.231 0.093 0.106 1.000
MATS2m 0.119 0.193 0.349 −0.168 0.239 1.000
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The squared correlation coefficient of training set Rtr
2 =

0.9138 and root-mean-square error (RMSE) = 0.0067
indicated that the developed model was acceptable with
goodness-of-fit. Using this model to predict the test set and the
prediction set, the squared correlation coefficients were 0.8922
and 0.8816, which suggested that the developed model had
predictive ability. The correlation between experimental
thermal conductivity and calculated values was plotted in
Figure 1 (detailed information are given in Supporting
Information, Table S2) which shows that the experiment
thermal conductivity were highly in agreement with the
calculated values.

In addition, predicted thermal conductivity values of
different chemical classes versus temperature are shown in
Figure 2. It can be found that the tendency of predicted

thermal conductivity variation with temperature is basically the
same with the experimental thermal conductivity variation with
temperature. As for the leave-one-out cross validation, QCV

2 =
0.9118 and RMSECV = 0.0072 manifested the stability of the
developed model.
The Y-randomization test was carried out to testify the

absence of chance correlation in this study. Random shuffles of
the thermal conductivity were conducted ten times, and the
results are shown in Table 5. The low Rrand

2 and Qrand
2 values

lower than the original model suggests that good stability and

predictive performance of the model are not based on the
chance correlation.23 In addition, CRp

2 equals to 0.9094, which
is close to the value of Rtr

2, manifesting the robustness of the
developed model.
For the training set, test set, and prediction set, the average

absolute relative deviation (AARD) are 4.14, 4.41, and 4.16%,
respectively, resulting in an AARD of 4.23% for the whole
dataset, and for the entire data set, the squared correlation
coefficient and the RMSE are 0.9038 and 0.0067, respectively.
The calculated statistical metrics recommended by Tropsha et
al.24,25 for the test set are as follows, which testify the predictive
ability of the developed model

= >R 0.8878 0.5CV,ext
2

= >r 0.8753 0.62

−
= − <

r r
r

( )
(0.8753 0.8746)/0.8753 0.1

2
0

2

2

or

− ′
= − <

r r
r

( )
(0.8753 0.8644)/0.8753 0.1

2
0

2

2

≤ = ≤ ≤ ′ = ≤k k0.85 0.9900 1.15 or 0.85 1.0076 1.15

According to the ref 26, both experimental and calculated
endpoint values were taken in the log scale, and MAE values
were calculated from long transformed values. In this study, the
MAE, training set range, and σ of the multiple linear regression
(MLR) model are 0.0174, 7.820 and 0.0113, respectively. As a
result, it can be found that two conditions are satisfying the
“GOOD model” criteria as the following

σ≤ × + ×

≤ ×

MAE 0.1 training set range and MAE 3

0.2 training set range

By using the “Prediction Reliability Indicator” tool, it can be
found that none of the external compounds is “bad”. Detailed
information can be seen in Supporting Information (Table S2).
Based on these results, it can be concluded that the GFA−

MLR model has high accuracy, robustness, and good predictive
ability.

2.2. Applicability Domain. As shown in Figure 3, the blue
vertical line stands for the threshold value h* and the two
horizontal red lines stand for ±3 standard deviation units. The
AD is located in the region of 0 ≤ h ≤ 0.0303 and −3 ≤ R ≤ 3.
It can be found that a majority of data points fell within the

Figure 1. Experimental thermal conductivity vs calculated values.

Figure 2. Predicted thermal conductivity values of different chemical
classes vs temperature.

Table 5. R2 and Q2 Values after Several Y-Randomization
Tests

iteration R2 Q2

1 0.01 0.01
2 0.01 0.01
3 0.01 0.01
4 0.01 0.02
5 0.01 0.02
6 0.01 0.01
7 0.01 0.01
8 0.01 0.01
9 0.02 0.00
10 0.00 0.02
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AD, which further indicates the robustness and validity of the
developed model.
Meanwhile, data points (thermal conductivity of formic acid

at 300, 310, 320, 330, 340, 350, 360, and 370 K, and thermal
conductivity of isoheptanol at 230, 240, 250, and 260 K) are
located in the region of h > 0.0303 and −3 ≤ R ≤ 3, which are
so-called as X outliers (good influence points). These
compounds were well predicted by the developed model,
which can stabilize it and make it more precise.27 There is no Y
outlier, which proves the reliability of the developed model.
2.3. Descriptor Interpretation. As discussed previously,

the most significant influence of descriptors on thermal
conductivity is SM2_B(s), SIC0, IC1, T, Eta_F, and
MATS2m, in turn.
SM2_B(s)28 is one of the 2D matrix-based descriptors. It

can be interpreted as a spectral moment of order 2 from the
Burden matrix weighted by I-state, which was proposed to
evaluate the spectral moment from the Burden matrix and is
expressed as

i

k
jjjjjj

y

{
zzzzzz∑ λ_ = +

=

SM B s2 ( ) ln 1
i

n

i
2

2
SK

where nSK represents the number of graph vertices and λi
represents the eigenvalues of the Burden matrix. The Burden
matrix is the augmented adjacency matrix derived from the H-
depleted molecular graph. The adjacency matrix can describe
the relationship of each vertex. Thus, SM2_B(s) can be used to
investigate the effect of different molecule group interaction on
thermal conductivity. The positive correlation coefficient for
SM2_B(s) indicates that the stronger the molecule group
interaction is, the larger the thermal conductivity is.
IC128,29 is the information content index (neighborhood

symmetry of 1-order), one of the information indices. The

general form of the neighborhood information content (ICk) is
calculated as follows

i
k
jjjjj

y
{
zzzzz∑= − ·

=

IC
A

n

A

n
1 log

g

G
g g

1 AT
2

AT

where g runs over the equivalence classes, Ag represents the
cardinality of the gth equivalence class, and nAT represents the
number of molecule atoms. IC1 can be used to evaluate and
describe the effect of molecules size, shape, and branching
information on thermal conductivity. From the negative
correlation coefficient, it can be found that the more the
molecular branches are, the shorter the main chain is, and the
lower the thermal conductivity is.
SIC0 (structural information content index (neighborhood

symmetry of 0-order)) is a type of information indices. It is
calculated as the information content IC0 normalized form to
delete the graph size influence

=SIC
ICk

n
0

log2 AT

It is a topological descriptor that can be used to measure the
degree of atom diversity in a molecule and describe its shape.
As for aliphatic oxygen-containing organic compounds,
deleting the influence of graph size, it can be regarded as a
measurement of number of oxygen atoms. The greater the
number of oxygen atoms is, the more the charge transfer is,
and the larger the thermal conductivity is. Thus, the SIC0 is
positively related with thermal conductivity.
In addition, T (temperature) also has a remarkable effect on

thermal conductivity. The positive value of coefficient means
that T is negatively related to thermal conductivity. As the
temperature rises, the liquid molecules move more chaotic, and
the molecular directional movement from the high-energy
region to the low-energy region weakens, which leads to the
decrease of heat conduction.30

Eta_F is the abbreviation of eta functionality index, a type of
ETA indices, which was proposed to evaluate the molecule
functionality, here quantifying the presence of heteroatoms and
multiple bonds.28,31 For aliphatic oxygen-containing organic
compounds, the larger the Eta_F value is, the more molecular
branches are, and the shorter the main chain is. Accordingly,
heat transfer along the main chain is reduced, and so is thermal
conductivity. For example, the Eta_F values of n-butanol,
isobutyl alcohol, and tertbutyl alcohol are 0.669, 0.722, and
0.772, respectively, and at 340 K, the thermal conductivity
values of them are 0.143, 0.128, and 0.11.
The Moran autocorrelation of lag 2 weighted by mass

MATS2m is one of the 2D autocorrelations. The general form
of Moran autocorrelation is represented by using Moran
coefficient to the molecular graph

Figure 3. AD of the developed model.

Table 6. Comparisons with Previous Studies

author methods no compounds class N R2 results

Gao and Cao14 MLR 155 alkanes 4 0.9510 s = 0.0033
Kauffman and Jurs15 MLR 213 organic solvents 9 0.953 RMSEP = 0.0136
Khajeh and Modarress16 GFA−MLR 116 alcohols 5 0.9521 RMSEP = 0.0474
Liu et al. MLR 139 alcohols 4 0.9738 RMSEP = 0.0029
this study GFA−MLR 1064 aliphatic oxygen-containing organic compounds 6 0.8922 AARD % = 4.41%

RMSEtest = 0.0071
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where wi represents any atomic property, w̅ represents the wi
average value on the molecule, δij represents the Kronecker
delta, and Δ represents the sum of the Kronecker deltas. The
Moran coefficient usually takes value in the interval [−1, +1].
Positive spatial autocorrelation corresponds to positive
coefficient values, whereas negative spatial autocorrelation
corresponds to negative coefficient values. The molecules with
positive autocorrelation have more branch chains than
molecules with linear chain, of which the main chain is
shorter and thermal conductivity value reduces. As a result, the
MATS2m is negatively related with thermal conductivity.
All these six parameters have significant contribution to the

thermal conductivity of oxygen-containing organic compounds.
2.4. Comparison between the Previous Studies and

the Present Study. Comparisons with previous studies are
shown in Table 6. Compared with the previous studies, the
present study has been further improved. Under the premise of
ensuring high fitting ability and predictive power, the present
study has fully validated the developed models and analyzed
the applicability domains (ADs).

3. CONCLUSIONS

In the present study, a 6-descriptor linear QSPR model was
developed for predicting the thermal conductivity of diverse
aliphatic oxygen-containing organic compounds (aliphatic
alcohols, ethers, aldehydes, ketones, acids, and esters). The
molecular descriptors were calculated based on the optimized
structures of aliphatic oxygen-containing organic compounds
and were screened using the genetic function approximation
(GFA) method. The predictive ability, model validation, and
the AD of the developed model indicate that the GFA−MLR
model has good predictive reliability and robustness. The
GFA−MLR model provides a transparent output, with an
AARD of 4.23% for the whole data set. Meanwhile, it can be
concluded that molecule group interaction, molecular
branches, number of oxygen atoms, temperature, and main
chain of molecules have great effects on the thermal
conductivity of aliphatic oxygen-containing organic com-
pounds. The present study is of great significance not only
by providing a robust model for predicting thermal
conductivity of diverse aliphatic oxygen-containing organic
compounds but also by shedding light on other thermody-
namic data estimation.

4. MATERIALS AND METHODS

4.1. Data set Collection. Thermal conductivity of the
substance is mainly affected by the molecular structure and the
temperature.32 Therefore, in this study, at first, 992 thermal
conductivity data of liquid aliphatic alcohols, ethers, aldehydes,
ketones, acids, and esters at different temperatures were
collected from the Handbook of Thermal Conductivity of Liquids
and Gases.33 These compounds covered 112 aliphatic oxygen-
containing compounds. There are 290 thermal conductivity
values of alcohols (29%), 78 thermal conductivity values of
ethers (8%), 100 thermal conductivity values of aldehydes
(10%), 112 thermal conductivity values of ketones (11%), 140
thermal conductivity values of acids (14%), and 272 thermal
conductivity values of esters (28%). Thermal conductivity

values of different chemical classes versus temperature are
shown in Figure 4.

In this study, Kennard Stone algorithm was performed to
split the data set, which was developed based on the different
Euclidean distance among all data. At first, the samples with
larger difference were selected into the training set. Then, the
remaining samples which are closer to the training data enter
the test set. Under the circumstance, all representative samples
can be divided into the training set. To some extent, the
unevenness of the training set can be avoided.34 In the end, the
entire data set was divided into 694-member training set and
298-member test set with Kennard−Stone algorithm. The
QSPR model would be developed based on the training set,
and the test set was used to evaluate the performance and
robustness of the developed model.35

In addition, to further testify the predictive power of the
developed model, in our laboratory, 72 experimental thermal
conductivity data of 15 compounds were measured as the
prediction set. These data were measured using the DRE-2A
thermal conductivity instrument with nonequilibrium state
transient hot-wire method.17 The transient hot wire method is
a method for measuring the thermal conductivity of liquids and
has the characteristics of high speed and high precision.
According to the relationship between temperature and time,
thermal conductivity was calculated automatically by the
instrument. Each sample was measured three times, and the
final data is an averaged value. The error of measurement is
<3%.
The detailed information of the involved compounds and

the whole data set which contains 1064 thermal conductivity
data are shown in Supporting Information (Tables S1 and S2).

4.2. Molecular Descriptors. All molecule structures were
constructed in GaussView graphical interface software pack-
age.36 Then, the structures were output as the Gaussian input
files. After modifying the input files, using the Keywords “Opt
freq B3LYP/6-31G(d)”, the molecule structures were opti-
mized with the Gaussian 09W.37 Confirming that there is no
virtual frequency in the convergence of the optimization result,
the optimized structures were saved as .sdf format files. In the
end, 4885 molecular descriptors for each optimized molecule
were calculated in Dragon 6.0 software38 (https://chm.kode-
solutions.net/products_dragon.php) covering most of various
theoretical approaches. The list of descriptors includes the

Figure 4. Thermal conductivity values of different chemical classes vs
temperature.
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simplest atom types, functional groups, fragment counts,
topological and geometrical descriptors, three-dimensional
descriptors, and so forth.
The calculated descriptors with constant and near-constant

values, descriptors with at least one missing value (some
descriptors of some molecules can’t be calculated), and
descriptors with pair correlation larger than or equal to 0.90
were excluded in Dragon 6.0. As a result, 363 descriptors were
retained.
4.3. Descriptor Screening and Model Development.

Generally, the multiple linear regression method39 is applied to
describe the linear quantitative relationship between a
dependent variable and multiple independent variables. It is
used commonly in QSPR research on account of its simplicity,
easy interpretability, and transparency.40,41

The GFA method can simulate biological evolution to
generate statistical models, which was derived from the
combination of genetic algorithm and multivariate adaptive
regression splines.42 In the present study, this method was used
to screen molecular descriptors and provide several MLR
models for selecting the best regression model. A flowchart of
the GFA process can be seen in Supporting Information
(Figure S1). Model development was carried out in the QSAR
module of Material Studio 8.0 software. At first, multiple
equations are randomly established on the basis of the
population of descriptors. From the developed equations, the
“parents” are selected according to the probability ratio of
fitting, and the next generation equation is generated. After a
crossover of each generation, mutations were made.43 These
operations will be repeated continuously for the specified
number of iterations unless the convergence criteria are met.
The fitting criteria for a GFA model can be evaluated using
different scoring functions during evolution. In the present
study, lack-of-fit was used as the scoring function because it
can determine the most proper number of variables, avoid
overfitting, and make the smoothness of the fitting under
control.44,45

4.4. Model Validation.Model validation was performed to
evaluate the goodness-of-fit statistic, robustness, and predictive
power of the developed model.
4.4.1. Internal Validation. The role of the internal

validation is to monitor the accuracy of the developed model
and confirm the presence of overfitting. Generally, the
commonly applied parameters to measure the goodness-of-fit
statistic is the squared correlation coefficient (Rtr

2), the RMSE,
and AARD (%) of the training set. Moreover, for MLR model,
there must be the test of multicollinearities among the
descriptors to reduce the redundant parameters. Thus, the
VIF was calculated. If VIF values of each descriptor in the
developed model are lower than 10, it can be concluded that
no multicollinearity exist among the descriptors.22 In addition,
leave-one-out cross validation (LOO cross validation) was
applied to further evaluate the possibility of overfitting with
QCV

2, RMSECV.
4.4.2. External Validation. External validation was

performed to assess the generalization ability of the developed
model. Validation metrics such as Rtest

2, RMSEtest, AARD
%,46,47 Qext‑F1

2, Qect‑F2
2, Qect‑F3

2, rm
2, and CCC48 were applied

to evaluate the model predicting performance. Tropsha et
al.24,25 proposed that whether the developed QSPR model
successful depends on the following criteria of the test set
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The parameters involved in above conditions are presented
clearly in the Reference of Tropsha et al.49

In addition, in order to further illustrate the stability and
robustness of the developed model, Roy et al.26 proposed the
MAE based criteria. If the MAE of the developed model
satisfies the below conditions,50 it can be concluded that the
model is acceptable

σ≤ × + ×

≤ ×

MAE 0.1 training set range and MAE 3

0.2 training set range

where the σ value represents the standard deviation of the
absolute error values for the test set data.
Furthermore, in this study, the quality of predictions for the

external compounds was checked with the following tool:
“prediction reliability indicator”, which is proved very valid for
multiple linear regression models.50 This tool categorized the
quality of predictions for the test set into three groups (good,
moderate, and bad) based on absolute prediction errors.

4.4.3. Y-Randomization Test. In addition, Y-Randomization
was performed to confirm the presence of chance correlation
between the dependent variables and the independent
variables.24,51 For Y-Randomization test, low Rrand

2 and Qrand
2

compared to the original R2 and Q2 of the resulting model are
expected.52 Meanwhile, the CRp

2 was applied to evaluate the
chance correlation, which is expected to be close to the value
of Rtr

2.53 The Y-randomization test was performed in the
program package MLR Y-randomization 1.2 (http://dtclab.
webs.com/software-tools).

4.5. Applicability Domain. It is essential to define a
domain of applicability for the developed model, namely, the
AD. The AD is determined by the response (property) of the
compounds and the descriptors in the developed QSPR
model.54 The Williams plot with standardized cross validated
residuals (R) versus leverage (Hat diagonal) values (h) is
highly recommended, which is widely used for visualizing the
AD.55−57 It should be noted that if the h value of a compound
in the training set is greater than the threshold value h* (h* =
3p/n, where p is the number of model variables plus one and n
is the number of the training set data), the structure of this
compound reinforces the developed model.10,58 If the most
data points are located in the region of 0 ≤ h ≤ h* and −3 ≤ R
≤ 3, the developed model can be considered statistically
acceptable and valid.
If cross validated standardized residuals of a compounds is

greater than three standard deviation units (R > 3σ) while the
leverage value is lower than the threshold value (hi < h*), this
compound could be judged as the response outlier (Y outlier).
If the leverage value of a compound is greater than threshold
value (hi > h*) while the value of R is lower than the 3
standard deviation units, this compound could be judged as the
structurally influential compounds (X outlier).
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■ ABBREVIATIONS

Roman symbols
R, the correlation coefficient; T, temperature

Greek symbols
λ, thermal conductivity

Sub- and superscripts
cal, calculated property; exp, experimental property; QSPR,
quantitive structure−property relationship; SM2_B(s), spectral
moment of order 2 from Burden matrix weighted by I-state;
SIC0, structural information content index (neighborhood
symmetry of 0-order); IC1, information content index
(neighborhood symmetry of 1-order); Eta_F, eta functionality
index; MATS2m, Moran autocorrelation of lag 2 weighted by
mass; MLR, multiple linear regression; GFA, genetic function
approximation; AARD, average absolute relative deviation;
RMSE, root-mean-square error; VIF, variance inflation factors;
AD, applicability domain
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